Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
.(1, x) → x
.(x, 1) → x
.(i(x), x) → 1
.(x, i(x)) → 1
i(1) → 1
i(i(x)) → x
.(i(y), .(y, z)) → z
.(y, .(i(y), z)) → z
.(.(x, y), z) → .(x, .(y, z))
i(.(x, y)) → .(i(y), i(x))
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
.(1, x) → x
.(x, 1) → x
.(i(x), x) → 1
.(x, i(x)) → 1
i(1) → 1
i(i(x)) → x
.(i(y), .(y, z)) → z
.(y, .(i(y), z)) → z
.(.(x, y), z) → .(x, .(y, z))
i(.(x, y)) → .(i(y), i(x))
Q is empty.
We use [23] with the following order to prove termination.
Recursive path order with status [2].
Quasi-Precedence:
i1 > .2 > 1
Status: i1: multiset
1: multiset
.2: [1,2]